type one:拆分所给的向量组

设向量组α1,α2,α3\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3线性无关,且α1+aα2+4α3\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3, 2α1+α2α32\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3, α2+α3\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3线性相关,则a=a=____。
(α1+aα2+4α3,2α1+α2α3,α2+α3)=(α1,α2,α3)(120a11411)(\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3, 2\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)\begin{pmatrix}1 & 2 & 0 \\ a & 1 & 1 \\ 4 & -1 & 1\end{pmatrix}
线性相关的意思是
其中一个向量可以用其他向量表示;
这个向量组组成的矩阵不是满秩;
以二维平面和三维空间举例,用x、y平面的向量表示不了z轴那个层面的向量

线性相关举例说明

设向量组α1,α2,,αm\alpha_1,\alpha_2,\ldots,\alpha_m线性无关,β1\beta_1可由α1,α2,,αm\alpha_1,\alpha_2,\ldots,\alpha_m线性表示,但β2\beta_2不可由α1,α2,,αm\alpha_1,\alpha_2,\ldots,\alpha_m线性表示,则()。

(A)α1,α2,,αm1,β1\alpha_1,\alpha_2,\ldots,\alpha_{m-1},\beta_1线性相关

(B)α1,α2,,αm1,β1,β2\alpha_1,\alpha_2,\ldots,\alpha_{m-1},\beta_1,\beta_2线性相关

(C)α1,α2,,αm,β1+β2\alpha_1,\alpha_2,\ldots,\alpha_m,\beta_1+\beta_2线性相关

(D)α1,α2,,αm,β1+β2\alpha_1,\alpha_2,\ldots,\alpha_m,\beta_1+\beta_2线性无关
这一题
β2\beta_2不可由α1,α2,,αm\alpha_1,\alpha_2,\ldots,\alpha_m线性表示,说明β2\beta_2相比于那个向量组多了一个空间维度,所以选项含有β2\beta_2都是线性无关的

再补充一个例子说明拆分和相关
设向量组α1,α2,α3\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3线性无关,证明:α1+α2+α3\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3, α1+2α2+3α3\boldsymbol{\alpha}_1+2\boldsymbol{\alpha}_2+3\boldsymbol{\alpha}_3, α1+4α2+9α3\boldsymbol{\alpha}_1+4\boldsymbol{\alpha}_2+9\boldsymbol{\alpha}_3线性无关。
A=(α1,α2,α3)A=(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3})B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3)B=(\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3},\boldsymbol{\alpha}_{1}+2\boldsymbol{\alpha}_{2}+3\boldsymbol{\alpha}_{3},\boldsymbol{\alpha}_{1}+4\boldsymbol{\alpha}_{2}+9\boldsymbol{\alpha}_{3})

B=A(111124139)B=A\begin{pmatrix}1&1&1\\1&2&4\\1&3&9\end{pmatrix}。因为(111124139)\begin{pmatrix}1&1&1\\1&2&4\\1&3&9\end{pmatrix}可逆,所以r(B)=r(A)=3r(B)=r(A)=3

α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3},\boldsymbol{\alpha}_{1}+2\boldsymbol{\alpha}_{2}+3\boldsymbol{\alpha}_{3},\boldsymbol{\alpha}_{1}+4\boldsymbol{\alpha}_{2}+9\boldsymbol{\alpha}_{3}线性无关。

type two:求过渡矩阵

ε1=(100)\boldsymbol{\varepsilon}_{1}=\begin{pmatrix}1\\0\\0\end{pmatrix}, ε2=(110)\boldsymbol{\varepsilon}_{2}=\begin{pmatrix}1\\1\\0\end{pmatrix}, ε3=(111)\boldsymbol{\varepsilon}_{3}=\begin{pmatrix}1\\1\\1\end{pmatrix}e1=(102)\boldsymbol{e}_{1}=\begin{pmatrix}1\\0\\-2\end{pmatrix}, e2=(114)\boldsymbol{e}_{2}=\begin{pmatrix}1\\1\\4\end{pmatrix}, e3=(021)\boldsymbol{e}_{3}=\begin{pmatrix}0\\2\\1\end{pmatrix}为三维空间的两组基,则从基ε1\boldsymbol{\varepsilon}_{1},ε2\boldsymbol{\varepsilon}_{2},ε3\boldsymbol{\varepsilon}_{3}到基e1\boldsymbol{e}_{1},e2\boldsymbol{e}_{2},e3\boldsymbol{e}_{3}的过渡矩阵为_______.

有点像是矩阵变换的逆变换
左乘是行变换,右乘是列变换
解 令过渡矩阵为QQ,则(e1,e2,e3)=(ε1,ε2,ε3)Q(e_1,e_2,e_3)=(\varepsilon_1,\varepsilon_2,\varepsilon_3)Q,则Q=(ε1,ε2,ε3)1(e1,e2,e3)Q=(\varepsilon_1,\varepsilon_2,\varepsilon_3)^{-1}(e_1,e_2,e_3)

(111011001)(102110241)(100102010251001241)\begin{pmatrix}1&1&1\\0&1&1\\0&0&1\end{pmatrix}\begin{pmatrix}1&0&-2\\1&1&0\\-2&-4&1\end{pmatrix}\to\begin{pmatrix}1&0&0&1&0&-2\\0&1&0&2&5&1\\0&0&1&-2&-4&1\end{pmatrix}

得过渡矩阵为Q=(102251241)Q=\begin{pmatrix}1&0&-2\\2&5&1\\-2&-4&1\end{pmatrix}

(e1,e2,e3)=(ε1,ε2,ε3)Q(e_1,e_2,e_3)=(\varepsilon_1,\varepsilon_2,\varepsilon_3)Q,则Q=(ε1,ε2,ε3)1(e1,e2,e3)Q=(\varepsilon_1,\varepsilon_2,\varepsilon_3)^{-1}(e_1,e_2,e_3)
这一步总是忘,哎
Q=(ε1,ε2,ε3)1(e1,e2,e3)Q=(\varepsilon_1,\varepsilon_2,\varepsilon_3)^{-1}(e_1,e_2,e_3)这一步的时候
按顺序把这俩写到一个矩阵里边,然后做初等变换得出结果

例题二
设三维向量空间R3\mathbb{R}^{3}中的向量ξ\xi在基α1=(121)\boldsymbol{\alpha}_{1}=\left(\begin{array}{c}1\\-2\\1\end{array}\right), α2=(011)\boldsymbol{\alpha}_{2}=\left(\begin{array}{c}0\\1\\1\end{array}\right), α3=(321)\boldsymbol{\alpha}_{3}=\left(\begin{array}{c}3\\2\\1\end{array}\right)下的坐标为(x1,x2,x3)T(x_{1},x_{2},x_{3})^{T},在基β1\boldsymbol{\beta}_{1},β2\boldsymbol{\beta}_{2},β3\boldsymbol{\beta}_{3}下的坐标为(y1,y2,y3)T(y_{1},y_{2},y_{3})^{T},且

{y1=x1x2x3,y2=x1+x2,y3=x1+2x3,\left\{\begin{array}{l} y_{1}=x_{1}-x_{2}-x_{3}, \\ y_{2}=-x_{1}+x_{2}, \\ y_{3}=x_{1}+2x_{3}, \end{array}\right.

求从基β1\boldsymbol{\beta}_{1},β2\boldsymbol{\beta}_{2},β3\boldsymbol{\beta}_{3}到基α1\boldsymbol{\alpha}_{1},α2\boldsymbol{\alpha}_{2},α3\boldsymbol{\alpha}_{3}的过渡矩阵。
解 因为ξ=(α1,α2,α3)X\xi=(\alpha_{1},\alpha_{2},\alpha_{3})X, ξ=(β1,β2,β3)Y\xi=(\beta_{1},\beta_{2},\beta_{3})Y,由y1=x1x2x3y_{1}=x_{1}-x_{2}-x_{3}, y2=x1+x2y_{2}=-x_{1}+x_{2}, y3=x1+2x3y_{3}=x_{1}+2x_{3}Y=(111110102)XY=\begin{pmatrix}1&-1&-1\\-1&1&0\\1&0&2\end{pmatrix}X,由(α1,α2,α3)X=(β1,β2,β3)Y(\alpha_{1},\alpha_{2},\alpha_{3})X=(\beta_{1},\beta_{2},\beta_{3})Y,得

(α1,α2,α3)X=(β1,β2,β3)Y=(β1,β2,β3)(111110102)X(\alpha_{1},\alpha_{2},\alpha_{3})X=(\beta_{1},\beta_{2},\beta_{3})Y=(\beta_{1},\beta_{2},\beta_{3})\begin{pmatrix}1&-1&-1\\-1&1&0\\1&0&2\end{pmatrix}X

于是(α1,α2,α3)=(β1,β2,β3)(111110102)(\alpha_{1},\alpha_{2},\alpha_{3})=(\beta_{1},\beta_{2},\beta_{3})\begin{pmatrix}1&-1&-1\\-1&1&0\\1&0&2\end{pmatrix}

故从基β1,β2,β3\beta_{1},\beta_{2},\beta_{3}到基α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}的过渡矩阵为(111110102)\begin{pmatrix}1&-1&-1\\-1&1&0\\1&0&2\end{pmatrix}


ps
正交的意思是两个向量点乘等于零,就是两个向量对应的坐标相乘相加等于0